Catalytic conversion of waste CO2 into value-added fuels and chemicals offers unprecedented opportunities for both environmental protection and economic development. Electrocatalytic CO2 reduction reaction (CO2RR) has garnered significant attention for its ability to efficiently convert CO2 into clean chemical energy under mild conditions. However, the relatively high energy barrier for *COOH intermediate formation often becomes the determining step in CO2RR, significantly limiting reaction efficiency.
Inspired by enzyme catalysis, a team led by Prof. Jiang Hai-Long and Prof. Jiao Long from the University of Science and Technology of China (USTC) of the Chinese Academy of Sciences (CAS) developed a novel strategy to stabilize *COOH intermediate and enhance electrochemical CO2 reduction by constructing and modulating the hydrogen-bonding microenvironment around catalytic sites. Their work is published in the Proceedings of the National Academy of Sciences.
In this work, the team co-grafted catalytically active Co(salen) units and proximal pyridyl-substituted alkyl carboxylic acids (X-PyCn) onto Hf-based MOF nanosheets (MOFNs) via a post decoration route, affording Co&X-PyCn/MOFNs (X = o, m or p representing the ortho-, meta-, or para-position of pyridine N relative to alkyl chain; n = 1 or 3 representing the carbon atom number of alkyl chains) materials.